Regeneration of cerebral-buccal interneurons and recovery of ingestion buccal motor programs in Aplysia after CNS lesions.
نویسندگان
چکیده
In the sea slug Aplysia, rhythmic biting is eliminated after bilateral cerebral-buccal connective (CBC) crushes and recovers within 14 days postlesion (dpl). The ability of cerebral-buccal interneuron-2 (CBI-2) to elicit ingestion buccal motor programs (iBMPs; i.e., fictive rhythmic ingestion) and to regenerate synaptic connections with target buccal neurons was assessed with intracellular recordings and dye injections. Isolated central ganglia were obtained from control animals and from lesioned animals at selected times after bilateral CBC crushes. Within 3 wk postlesion, transected CBI-2 axons sprouted at least 10 fine neurites confined to the core of the CBC that projected across the crush site toward the buccal ganglia. When fired with depolarizing current steps, CBI-2 was not observed to elicit iBMPs in preparations until 14 dpl. Thereafter a progressive enhancement in CBI-2's ability to elicit iBMPs was observed with time postlesion. By 40 dpl, CBI-2-elicited iBMPs were indistinguishable from those of controls. CBI-2 regenerated monosynaptic connections with appropriate buccal premotor- and motorneurons by 14 dpl, and the strength of these connections increased with time postlesion. Dramatic frequency facilitation was exhibited by the regenerating CBI-2 buccal synapses; for instance, at early postlesion times, no observable excitatory postsynaptic potentials (EPSPs) were obtained with 1- Hz stimulation of CBI-2, while at 7 Hz, a dramatic increase in EPSP amplitude was obtained with successive spikes. The present study shows that the time course of axonal and synaptic regeneration by command-like interneuron CBI-2 is correlated with the recovery of ingestion buccal motor programs elicited by CBI-2. These results parallel our previous findings of functional neural regeneration in the feeding system and suggest that functional neural regeneration is at least in part mediated by regeneration of specific synaptic pathways.
منابع مشابه
Short-term synaptic enhancement modulates ingestion motor programs of aplysia.
Activity-dependent synaptic plasticity regulates the flow of information in neuronal networks and has important implications for the expression of behavior. We find a functional role for short-term synaptic enhancement (STE) such as facilitation, augmentation, and post-tetanic potentiation at central synapses in the sea slug Aplysia californica. Consummatory feeding in Aplysia such as rhythmic ...
متن کاملCompartmentalization of information processing in an aplysia feeding circuit interneuron through membrane properties and synaptic interactions.
We describe a pair of cerebral-to-buccal interneurons, CBI-5/6, which have outputs and inputs in two ganglia. The soma in the cerebral ganglion received synaptic inputs during buccal motor programs (BMPs) and after mechanical stimulation of the lips. During BMPs the soma received antidromic spikes generated in processes in the buccal ganglion. The soma was driven into a plateau potential by eac...
متن کاملIdentification of a GABA-containing cerebral-buccal interneuron-11 in Aplysia californica.
The cerebral-buccal interneurons (CBIs) in Aplysia are a group of inter-ganglionic projection neurons that regulate feeding motor programs. In this study, electrophysiological and immunocytological methods were used to identify a previously uncharacterized CBI, designated CBI-11. CBI-11 is a gamma-aminobutyric acid (GABA)-immunoreactive neuron located in the G cluster of the cerebral ganglion. ...
متن کاملA newly identified buccal interneuron initiates and modulates feeding motor programs in aplysia.
Despite considerable progress in characterizing the feeding central pattern generator (CPG) in Aplysia, the full complement of neurons that generate feeding motor programs has not yet been identified. The distribution of neuropeptide-containing neurons in the buccal and cerebral ganglia can be used as a tool to identify additional elements of the feeding circuitry by providing distinctions betw...
متن کاملA cerebral central pattern generator in Aplysia and its connections with buccal feeding circuitry.
Different feeding-related behaviors in Aplysia require substantial variations in the coordination of movements of two separate body parts, the lips and buccal mass. The central pattern generators (CPGs) and motoneurons that control buccal mass movements reside largely in the buccal ganglion. It was previously thought that control of the cerebral neuronal circuitry and motoneurons that generate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 84 6 شماره
صفحات -
تاریخ انتشار 2000